

The principles of indirect and mixed treatment comparisons

Kelly Fleetwood

Quantics Consulting

www.quantics.co.uk

Outline

- Introduction to indirect and mixed treatment comparisons
- Assumptions of indirect and mixed treatment comparisons

Methods

- Standard pairwise meta-analysis
- Based on direct randomised evidence

Fixed effect model Random effects model

Heterogeneity: I-squared=86.6%

Cipriani et. al. (2009). Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. The Lancet. 373 (9665). pp 746 - 758

- 1. No direct evidence
- 2. Insufficient direct evidence
- 3. More than two treatments

 No direct evidence available

 Insufficient direct evidence

More than two treatments

More than two treatments

Terminology

	2 treatments	More than 2 treatments
Review	Systematic review	 Systematic review Comparative effectiveness review Comparing multiple interventions review
Analysis	 Meta-analysis Pairwise meta- analysis Conventional meta- analysis (CMA) 	 Network meta-analysis (NMA) Multiple treatments meta-analysis ITC MTC

Indirect treatment comparison (ITC)

Indirect treatment comparison (ITC)

Mixed treatment comparison (MTC)

Mixed treatment comparison (MTC)

Cipriani et. al. (2009). Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. The Lancet. 373 (9665). pp 746 - 758

History

Adapted from Salanti (2012)

Opinions

- "... to ignore indirect evidence either makes the unwarranted claim that it is irrelevant, or breaks the established precept of systematic review that synthesis should embrace all available evidence" Lu & Ades, 2004
- "next generation evidence synthesis toolkit" Salanti, 2012

Acceptance

NICE

 Canadian Agency for Drugs and Technologies in Health

 Pharmaceutical Benefits Advisory Committee (Australia)

NICE

- Guide to the methods of technology appraisal (2008) (section 5.3.13 – 5.3.22)
- Preference for 'head to head' evidence
- No 'head to head' evidence
 - » ITC
- 'Head to head' evidence
 - » MTC (if it will add information)

Assumptions

- All pairwise meta-analysis assumptions
 - All relevant studies are included
 - Adequate search strategy
 - Publication bias

Individual studies are not biased

Assumptions

- All pairwise meta-analysis assumptions
 - Studies are homogeneous in terms of patient characteristic and study design
 - Need to consider effect modifiers any aspect of patient characteristics or study design that may influence the relative treatment effect
 - Effect modifiers are absent or accounted for in the analysis (e.g. sub-group analysis, meta-regression)

Assumptions

Similarity (also called transitivity)

Consistency

Similarity (transitivity)

- Applies to ITCs and MTCs
- Indirect effects can be estimated from direct effects

Consistency

- Applies to MTCs only
- Direct and indirect evidence agree
- Compare direct and indirect evidence to evaluate

Consistency

- Comparison of direct and indirect estimates (Song, 2003)
- Based on 44 comparisons of different interventions from 28 systematic reviews

Consistency

Meta-analyses

From: Song (2003)

Naïve indirect comparison

- Compare absolute effects from individual trial arms
- Benefits of randomisation lost
- NEVER
 RECOMMENDED

Stepwise approach

- 1. Direct evidence
 - pairwise meta-analysis techniques

d_{AC}

- Estimate of treatment effect: A – C
- Could be log odds ratio, log hazards ratio, difference in mean response, ...

Stepwise approach

- 1. Direct evidence
 - pairwise meta-analysis techniques
- 2. No direct evidence
 - adjusted indirect treatment comparison (Bucher, 1997)

$$d_{AB} = d_{AC} - d_{BC}$$

Stepwise approach

- Tedious for large networks
- Not suitable for MTC

Statistical modelling approaches

- Complex ITCs and MTCs
- Bayesian hierarchical approach most common
 - Developed by Lu & Ades (2004)
 - ✓ ITCs and MTCs of any size
 - ✓ Can rank each treatment (as well as estimate relative treatment effects)
 - More difficult to implement

Statistical modelling approaches

- Fixed effect models or random effects models
- Fixed effect models
 <u>Key assumption</u>: the true relative treatment effect is the same for each study
- Random effects models
 <u>Key assumption</u>: the true relative treatment effect are exchangeable (they are not exactly the same but follow a distribution)

- Most statistical inference in health is based on Frequentist approaches:
 - P-values, confidence intervals, ...
- Bayesian statistics is a different approach to statistical interference
 - It combines data with prior information

In Frequentist statistics inferences about a parameter (e.g. the mean) are based only on the data.

In Bayesian statistics inferences about a parameter (e.g. the mean) are based on a prior distribution of the parameter and the data.

- Bayesian models can be harder to solve than Frequentist models
- Need to use simulation to get results (usually)
 - Markov Chain Monte Carlo (MCMC) methods
 - e.g. WinBUGS
- The simulation takes the prior distribution of the parameter (e.g. OR) and the data and produces the posterior distribution of the parameter

Advantages

- Can incorporate prior information if available
- Can rank treatments

Disadvantages

Need simulation methods for complex models

Summary

- The choice of prior distribution for the parameter is critical
 - ITCs and MTCs usually use vague priors
- Requires simulation
 - Need to check the simulation has converged
- Produces credible intervals (rather than confidence intervals)

Summary

- Indirect and mixed treatment comparisons can be applied when
 - there is no direct evidence
 - Insufficient direct evidence
 - More than two treatments
- Same assumptions as pairwise meta-analysis
 - + similarity and consistency
- Bayesian methods are often applied to ITCs and MTCs

References

- Salanti, G. 2012. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods. Published online. DOI: 10.1002/jrsm.1037
- Song, F. et. al. 2003. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ. Published online. DOI: 10.1136/bmj.326.7387.472
- Bucher et. al. 1997. The results of direct and indirect comparisons in meta-analysis of randomized controlled trials. Journal of Clinical Epidemiology. 50 (6). pp. 683-691.
- Lu, G. and Ades, A.E. 2004. Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine. 23 (20). pp. 3104-3124.